Arithmetic differential equations and $E$-functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Arithmetic Partial Differential Equations

Kovič, and implicitly Ufnarovski and Åhlander, defined a notion of arithmetic partial derivative. We generalize the definition for rational numbers and study several arithmetic partial differential equations of the first and second order. For some equations, we give a complete solution, and for others, we extend previously known results. For example, we determine under which conditions two cons...

متن کامل

Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method

In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.

متن کامل

Fuchsian differential equations from modular arithmetic

Counting combinatorial objects and determining the associated generating functions can be computationally very difficult and expensive when using exact numbers. Doing similar calculations modulo a prime can be orders of magnitude faster. We use two simple polygon models to illustrate this: we study the generating functions of (singly) punctured staircase polygons and imperfect staircase polygon...

متن کامل

Diophantine Equations Involving Arithmetic Functions of Factorials

DIOPHANTINE EQUATIONS INVOLVING ARITHMETIC FUNCTIONS OF FACTORIALS Daniel M. Baczkowski We examine and classify the solutions to certain Diophantine equations involving factorials and some well known arithmetic functions. F. Luca has showed that there are finitely many solutions to the equation:

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2005

ISSN: 0019-2082

DOI: 10.1215/ijm/1258138127